Analysis of Stealer Malware

Authored by: Garrett Blaylock and Will Kittredge — student analysts

In this post, we analyze stealer malware using ANY.RUN to try to understand its capabilities.
Based on our findings, we discuss the potential impact of the malware and suggest some
mitigation strategies.

If you want to follow along, you can find more details about the malware and download a sample
from the MalwareBazaar database entry linked at the end. Be forewarned, though. Understand
the potential dangers and remember to take proper precautions with real malware samples!

Behavior during execution

During execution, the malware seems to keep out of the way. The average user who just opened
their laptop for some web browsing would probably be unaware of its presence unless they went
looking for it. This would be expected for stealer malware - the less attention it draws to itself,
the better. By remaining hidden, it can persist on the system for longer and steal more data.

We do get some indication that something might be amiss when the malware first installs and
executes, though.

tartup injection.
ully executed startup injection.

Systern Error

The Program can"t start because
| api-ms-win-crt-runtime-|11-1-.dll is missing from your
- computer, Try reinstalling the program to fix this problem

Popup and cmd windows visible at the desktop on startup

In the background, information-gathering child processes are being created. We will examine
these later in the Child process section.

Network activity

We can see that the stub.exe process made a request to ip-api.com to perform an IP lookup.
Based on the User-Agent field of the request, we infer that the malware is probably using Python.
This is consistent with information listed on MalwareBazaar.

Timeshift

Class
Device Retrieving External IP Address De._
Device Retrieving External IP Address De

Device Retrieving External IP Address De._.
Not Suspicious Traffic

PID Process name

Message

e8ea
eefa
2106
elie
el2ae
e13e
el4a
@158
2166
e17e
elsa
e12e
2la0
@1be
@1ce
e1de
@lea
e1fe
2206

2
e
2
a
2
4
2 45
2
Ll

E I T T R

L

L
M fa

=)

~
v

63 63 65 73 73 2d 43 &f Be 74 72 &f 6c 2d 41
6c 6F 77 2d 4f 72 69 67 69 6e 3a 20 2a @d @a
58 2d 54 74 6c 33 2@ 36 3@ @d @a 58 2d 52 6c 33

Access-C ontrol-A

1low-Ori gin: *

X-Ttl: 6 @ -X-R1:
[f "

ANY.RUN detected threats (top) and stub. exe request/response information (left and right)

[11 | (ip.addr == 208.95.112.1 &8 tcp.port == B0) && (ip.addr == 192.168.100.143 && tep.port == 43690)
No. Time Source Destination Protocol Length Host Info
604 6.865425 192.168.100.143 288.95.112.1 TP 66 496%@ » 80 [SYN] Seq=2 Win=642408 Len=8 MSS5=1460 WS=256 SACK_PERM=1
685 6.965381 208§.95.112.1 192.168.100.143 TCP 66 88 + 49698 [SYN, ACK] Seq=8 Ack=1 Win=819@ Len=0 M55=1338 W5=16 SACK_PERM=1
606 6.965469 192.168.100.143 208.95.112.1 TP 54 496%@ > 80 [ACK] Seq=1 Ack=1 Win=263168 Len=0
687 6.966194 192.168.100.143 208.95.112.1 HTTP 179 ip-api.com GET /json HTTP/1.1
608 7.066733 208.95.112.1 192.168.190.143 HTTP/J.. 518 HTTP/1.1 208 OK , JavaScript Object Notation (application/json)
6089 7.0963484 192.168.100.143 283.95.112.1 TCcP 54 49693 » 80 [FIN, ACK] Seq=126 Ack=465 Win=262656 Len=0
610 7.167292 208.95.112.1 192.168.190.143 TCcP 54 80 - 49698 [FIN, ACK] Seq=465 Ack=127 Win=8192 Len=0
611 7.16742% 192.168.100.143 288.95.112.1 TP 54 49693 » 80 [ACK] 5eq=127 Ack=466 Win=262656 Len=@

We can download the PCAP containing all of the network traffic and use Wireshark to confirm
that a connection was established. The site responded with JSON data.

GET | 404: Not Found

The malware also attempted to access raw user content on GitHub. The request gets a 404: Not
Found response back, but the URL was suspicious. Based on the URL value, we assumed that this
was Javascript to perform some type of malicious injection.

Child processes

The malware spawns child processes that gather information about the system, among other
things. In this case cmd.exe is being invoked with the /c option, which tells the command
prompt to exit after the specified command is executed.

Processes

- (g stubexe |PE| C

exelastealer

cmd.exe /c

emdexe /fc*®

cmd.exe Jc

cmd.exe

cmd.exe

cmd.exe /c

104

cmd.exe /c"reg add HK i tun fv \admin\AppD:

cmd.exe /c

emd.exe /c “taskkill /F /IM chr

emd.exe /o

cmd.exe Jc

cmd.exe /c'chcp”

103
cmd.exe n Info# 0 HE HHH #HFEnvironment Var

756 32

cmd.exe /c

cmd.exe

cmd.exe /c

ANY.RUN process list, cmd.exe process spawned by stub.exe are visible

Some of these processes establish persistence methods for the malware. For example, we can
see that process 2600 ran a command that creates a scheduled task to automatically run the
malware. Process 396 added a key to the registry to make the malware a startup program. Other
processes could reveal potentially sensitive information. Process 2356, for example, executes
the Get-Clipboard PowerShell cmdlet to get the contents of the clipboard. Passwords and
personal information might be stored here depending on the victim user’s prior activity that day.

A de-obfuscated PowerShell command leads us to believe that this malware is also able to take
screenshots of the infected system.

Base64 encoded command

[Reflection.Assembly]: : LoadWithPartialName("“System.Drawing™)
function screenshot([Drawing.Rectangle]$bounds, $path) {
$bmp = New-Object Drawing.Bitmap $bounds.width, $bounds.height

$graphics = [Drawing.Graphics]::FromImage($bmp)
$eraphics.CopyFromScreen($bounds.lLocation, [Drawing.Point]::Empty, $bounds.size)
$bmp . Save($path)

$graphics.Dispose()

$bmp.Dispose()

1
J

$bounds = [Drawing.Rectangle]::FromLTRB(®, ©, 1928, 1688)
$path = (Get-Item .).FullName+"\screenshot.png"
screenshot $bounds $path

Decoded Base64

MITRE ATT&CK

Defense evasion

[Modity Registry
1

Scheduled T
Job (1/5) | uery Registry
7

System
Information
Discovery

Scheduled Task/
Job (1/5)

Hide Artifacts
0)

Masquerading
(119)

System Network
Connections
Discovery

1

System Owner/
User Discovery

MITRE ATT&CK chart

The malware’s tactics align with several MITRE ATT&CK techniques, including command-line
execution (T1059.001), registry key modifications for persistence (T1547.001), and standard
application layer protocols for command and control communication (T1871.801). The MITRE
ATT&CK chart generated by ANY.RUN helps us get a more complete picture of what the malware
is doing.

Command and scripting interpreters such as Python, PowerShell, and the Windows command
prompt are leveraged by the malware in execution. Using persistence methods like autostart and
scheduled tasks, the malware ensures that it will be executed when the victim uses their
machine. Once running, it attempts to gather information from the system and access
credentials while simultaneously hiding itself. The stealer malware also appears to be
virtualization-aware, as ANY.RUN detected time-based virtualization/sandbox evasion.

Indicators of Compromise (10Cs)

As part of the information-gathering processes started by the malware, it created network
requests that ANY.RUN detected as potential indicators of compromise. These consist of a
network connection that the stub.exe process made to the restores.name domain (IP
135.181.65.219) and the failed attempt to access the injection.js file stored on GitHub. The
network communication with ip-api.com was likely for geolocation and reconnaissance
purposes.

Obfuscation techniques were also identified, with Base64-encoded PowerShell commands used
to execute scripts, possibly for capturing screenshots of the victim’s system. These I0Cs provide
critical insights for defenders to recognize and respond to the malware’s activity effectively.

Key observations

The analyzed malware exhibits stealthy behavior typical of stealer malware, designed to operate
quietly in the background to avoid drawing attention. While it generally remains unobtrusive,
initial execution reveals some activity through visible popups and cmd windows. This behavior
might hint at an issue to attentive users but would likely go unnoticed by most. The malware
engages in extensive information gathering by creating child processes that collect system data,
and its capabilities include executing PowerShell commands, potentially for capturing
screenshots.

Persistence mechanisms are a notable aspect of this malware's functionality, with evidence of
registry modifications and scheduled tasks ensuring automatic execution upon system startup.
This allows it to maintain access and carry out operations without requiring user intervention.
Additionally, the malware communicates with external servers, including ip-api.com, to gather
reconnaissance data, leveraging HTTP requests to interact with these endpoints. The User-Agent
field in the request suggests that it operates using Python, aligning with information from the
MalwareBazaar database. Collectively, these observations indicate that the malware could be
used for credential theft, espionage, or data exfiltration, making it a significant threat to affected
systems.

Recommendations

To mitigate the risks posed by this malware, organizations should implement a multi-layered
approach to cybersecurity. Robust endpoint protection solutions, such as Endpoint Detection
and Response (EDR) tools, should be deployed to monitor and block unauthorized activities,
including child process creation, registry modifications, and suspicious network
communications. Complementing this, user awareness training is essential to reduce the
likelihood of infection, particularly by educating users on the dangers of interacting with
unknown attachments, links, or files.

Network monitoring should also be a priority, using firewalls and intrusion detection/prevention
systems (IDS/IPS) to block communication with known malicious domains or IP addresses, such
as ip-api.com. An incident response plan should be in place to address infections swiftly,
encompassing steps for isolating affected systems, removing malware, and recovering data.
Finally, keeping operating systems and software regularly updated is vital to minimize
vulnerabilities that the malware could exploit. By combining these strategies, organizations can
effectively reduce the risks and impact of malware attacks.

Discussion

This malware demonstrates the sophisticated yet stealthy behavior typical of modern stealer
malware. By blending in with legitimate processes and establishing persistence through registry
and scheduled task modifications, the malware maximizes its chances of success. The observed
communication with external servers underscores its reconnaissance capabilities, likely aimed at
tailoring its operations to the infected system's environment.

The use of PowerShell commands for potential screenshot capturing further highlights the
flexibility of this malware. Combined with its persistence techniques, it poses a significant threat
to individual users and organizations, especially those lacking advanced security measures.
While its exact payload and objectives remain unclear, the potential for credential theft or
sensitive data exfiltration is evident.

Conclusion

Analyzing this stealer malware provides critical insights into its techniques and impact. From
initial infection to establishing persistence, its methods highlight the importance of proactive
cybersecurity measures. Advanced tools like ANY.RUN make it easier to dissect such threats and
understand their implications.

Organizations must prioritize defense-in-depth strategies to mitigate the risks posed by
malware of this nature. A combination of user education, advanced monitoring tools, and
effective response protocols can reduce exposure and improve resilience against similar threats.

For further details on this malware, including its behavior and characteristics, refer to the
provided ANY.RUN task links. Understanding and preparing for these threats is essential in an
ever-evolving cybersecurity landscape.

More links

MalwareBazaar database entry:
https://bazaar.abuse.ch/sample/18687a2ceebf3eda4alla2ef®Ob1d85360d8837ad05¢c1b57f9f749
eaf06578848e/

Public (not ours) ANY.RUN task:
https://app.any.run/tasks/f71ce34e-fadf-4f{68-8512-b132d935e46d/

This report also contains some useful information about the malware sample:
https://tria.ge/241102-3gj3aayell

Exela Stealer GitHub page (detected by ANY.RUN):
https://github.com/quicaxd/Exela-V2.0

